
2-Jointed Arm Control System for FRC

Thomas Anderson, FRC 997

January 2023

1 Introduction

Robotic arm systems of two coplanar revolute joints are commonly implemented
in both industry and education. However, the required control systems can be
more complex than control systems for other types of coplanar 2-dof systems
(revolute-prismatic, prismatic-prismatic) and require intentional design to meet
the requirements.

2 Kinematics

2.1 Forward Kinematics

Forward kinematics in this case refer to the determination of the position in
space of the arm segments and end effector from given information on the angle
of each joint.

For arm segments
[Sa, Sb],

such that Sa is connected to the shoulder joint of the arm, and Sb is connected
to the end effector, of positive lengths

[La, Lb],

and joint angles
[θa, θb],

such that θa cooresponds to the shoulder joint angle, and θb to the elbow joint
angle (from Sa), the position of the tip of Sa is given by[

xa

ya

]
=

[
Lacos(θa)
Lasin(θa)

]
,

and the position of the tip of Sb (the end effector) is given by[
xb

yb

]
=

[
Lacos(θa) + Lbcos(θa + θb)
Lasin(θb) + Lbsin(θa + θb)

]
.
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2.2 Inverse Kinematics

Inverse kinematics refer to the derivation of a solution to arm joint angles given
a desired end effector position.

The position inverse kinematics of a 2-jointed coplanar arm can be geomet-
rically solved. [Lynch and Park, 2017].

Recalling arm segments [Sa, Sb] from section 2.1 of the same characteristics,
no solution exists for the goal point [

xg

yg

]
,

if

La + Lb <
√
x2
g + y2g ,

or

|La − Lb| >
√
x2
g + y2g .

In solvable cases, let

γ =


tan−1(yg/xg), if xg > 0

tan−1(yg/xg) + π, if xg < 0
π/2, if xg = 0 and yg > 0
−π/2, if xg = 0 and yg < 0

 1

α = cos−1(
x2
g+y2

g+L2
a−L2

b

2La

√
x2
g+y2

g

)

β = cos−1(
L2

a+L2
b−x2

g−y2
g

2LaLb
)

If xg and yg both equal 0, the system is at a singularity and infinitely many
solutions exist (assuming that the point [0, 0] is reachable by the arm).

Multiple solutions to the configuration of the arm can be found at all points
which do not lie on the edge of the feasible space.

The solutions can be given as:[
θa
θb

]
r

=

[
γ − α
π − β

]
[
θa
θb

]
l

=

[
γ + α
β − π

]
Geometric solutions are sufficient to determine the position of the arm, but

for more advanced planning and movement time-derivatives of position are use-
ful. These can be found with an intermediary Jacobian.

As per the inverse kinematics of the system, let

E⃗ =

[
xg

yg

]
=

[
Lacos(θa) + Lbcos(θa + θb)
Lasin(θa) + Lbsin(θa + θb)

]
,

1Also known as the atan2 function.
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and

θ⃗ =

[
θa
θb

]
.

It follows that

JE⃗,θ⃗ =

[ ∂
∂θa

xg
∂

∂θb
xg

∂
∂θa

yg
∂

∂θb
yg

]

JE⃗,θ⃗ =

[ ∂
∂θa

(Lacos(θa) + Lbcos(θa + θb))
∂

∂θb
(Lacos(θa) + Lbcos(θa + θb))

∂
∂θa

(Lasin(θa) + Lbsin(θa + θb))
∂

∂θb
(Lasin(θa) + Lbsin(θa + θb))

]
JE⃗,θ⃗ =

[
−Lasin(θa)− Lbsin(θa + θb) −Lbsin(θa + θb)
Lacos(θa) + Lbcos(θa + θb) Lbcos(θa + θb)

]
With our Jacobian, we can write the the relationship between the time-derivatives
of joint angles and end effector position as

d

dt
E⃗ =

d

dt
θ⃗JE⃗,θ⃗

d

dt
E⃗J−1

E⃗,θ⃗
=

d

dt
θ⃗

3 Planning

3.1 Configuration Space

Configuration space is a 2-dimensional space with axes of the joint angles of
each rotational joint. It is distinct from the Cartesian space containing the
position of the end effector, but it is possible to convert between the two by
using forward and inverse kinematics.

The configuration space for a double-jointed arm is non-Euclidean, as the
angles of each joint can ”wrap”, or be coterminal with other angles. This makes
our configuration space actually the surface of a torus, where traveling too far
in one direction brings you to the other side of the graph in that dimension.

Configuration spaces are advantageous as they can better represent infor-
mation about impossible or unwanted states so a path-planning algorithm can
avoid them.

3.2 Space Traversal

A configuration space with defined obstacles still presents challenges in avoiding
these obstacles. Many pathfinding algorithms exist, such as RRT, which ran-
domly explores the space, A*, which biases towards the target, many of which
have better performance or results, but Dijkstra’s is very simple to implement
and still performs well. [Dijkstra, 1959].

The hardware computing resources available on the robot during competition
are powerful, but performance can still be an issue with dozens of processes
simultaneously running at 50 hz. Because Dijkstra’s graph traversal algorithm
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Figure 1: Sample configuration space for a two-jointed arm. White areas are
valid states for the arm joints to occupy, according to parameters on pro-
hibited spatial areas. Source code to generate this figure can be found at
https://github.com/TandeJ/Config-Space-Finder.

is able to produce optimal paths and be run in real-time (although it requires
pre-defined nodes and node connections), it is a natural fit for this application.

The algorithm works to minimize the sum of a cost function of moving from
one point to another, over the course of a path, or sequence of moves between
points. It does this over all points, not just those which are goals, and shortens
all paths whenever it can.

The least-costly (in this case, lowest
∑

(∆θa + ∆θb)) path from the initial
node to the goal node is followed. It is important to note that the trajectory for
each degree of freedom should be viewed as a separate function. As there are
an infinite number of possible initial and goal nodes, which depend on inverse
kinematic solutions and physical state, the algorithm almost always does not
begin at a pre-defined point. However, defining these initial and goal states is
very possible at runtime.

The baselined system uses linear trajectories between points. However, there
is interest into using n-th order Bézier splines, or parametric polynomial curves
defined by control points, to make d

dtθa and d
dtθb continuous. There are un-
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Figure 2: The sample configuration space from figure 1, with possible nodes and
node connections added.

resolved difficulties ensuring that these Bézier splines cannot enter prohibited
parts of the configuration space, and as such linear trajectories will be used,
at least initially. Additionally, simple acceleration and deceleration constraints
could easily be placed upon each degree of freedom, as they can effectively be
considered independent of each other. This maintains the shape of connections
and keeps them inside of prohibited spaces.

4 Control

Control of each joint is given to both a feedback controller, which can respond
to disturbances, and a feedforward controller, which adds control effort per an
a priori physics model.

4.1 Feedforward Control

Feedforward control uses modeled system dynamics to determine the control
input that, theoretically, drives the system to respond as intended. We use
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a feedforward model developed by Pedersen for a massed double-jointed arm,
which does not account for factors like gearbox friction, which is generally ac-
counted for by feedback control. [Pedersen, 2023]

Given arm segments [Sa, Sb], with lengths [La, Lb], masses [ma,mb], dis-
tances from their centers of mass to their lowest joints [ra, rb], and moments
about their center of mass [Ia, Ib], the system dynamics can be written as

M(θ)θ̈ + C(θ̇, θ)θ̇ + τg(θ) = τ

where the inertia matrix M is

M(θ) =

[
mar

2
a +mb(L

2
a + r2b ) + Ia + Ib + 2mbLarbcos(θb) mbr

2
b + Ib +mbLarbcos(θb)

mbr
2
b + Ib +mbLarbcos(θb) mbr

2
b + Ib

]
,

the coriolis and centrifugal force matrix C is

C(θ̇, θ) =

[
−mbLarbθ̇b −mbLarbsin(θb)(θ̇a + θ̇b)

mbLarbsin(θb)θ̇a 0

]
,

the gravity torque matrix τg is

τg =

[
gcos(θa)(mara +mbLa) +mbrbgcos(θa + θb)

mbrbgcos(θa + θb)

]
,

and the resultant joint torque matrix τ is

τ =

[
τa
τb

]
However, torque is not a directly controllable quantity with our motor con-

trollers, and cannot be summed with the voltage outputs of a feedback controller.
We can approximate a secondary feedforward model for direct-current per-

manent magnet motors with a gear reduction of G (G:1), empirical stall torque
τs maximum input voltage V , and input voltage U , the torque τ output by each
motor can be given by

τ = τsG
U

V
.

The feedforward input voltage for torque τ can be independently written as

U =
τV

τsG
.

4.2 Feedback Control

Feedback control addresses unmodelable dynamics on the arm, such as a col-
lision with a field element, friction, back-EMF, and so on. We will use simple
Proportional-Integral-Derivative controllers independently for each arm joint,
with setpoints defined by the trajectory generated in section 3.2, with kinody-
namic constraints applied, unless some serious inadequacy in the PID controller
is found. State-space LQR controllers could be considered in that case.
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u(t) = kpe(t) + ki

∫
e(t)dt+ kd

de

dt

A PID controller, properly tuned, is generally able to respond to large errors,
constant small errors, and fast movements that could result in future error.
PID controllers can be hard to tune without feedforward, especially for complex
dynamics like our arm system, but with feedforward they can be very straight-
forward.

5 State Estimation

5.1 Dynamics Model

A prediction of where the arm should be can be obtained with a predefined
mathematical simulation of the system, much like a feedforward model, which
can convert from current states and control inputs to future states. This can
be used to inform what ”reasonable” state estimates can be, but should not be
solely relied upon as they cannot compensate for unmodeled dynamics.

5.2 Sensors

Sensors, while prone to electromechanical randomness (”noise”), are important
to determination of system state as they report unmodeled disturbances to the
physics model, which could otherwise easily compound over time to create a
wildly inaccurate prediction.

5.2.1 External Potentiometers

Potentiometers connected to the axis of rotation of the arm return analog signals
to the main computer encoding absolute position of the arm segment relative to
the mounting of the potentiometer. They retain their accumulation and position
through power cycles, and thus can be relied on for a reliable estimate of actual
arm state.

5.2.2 Integrated Encoders

The brushless motors used for the mechanical arm powertrain necessarily require
rotary encoders for basic functionality. These encoders are conveniently also
exposed to an end user through an API. They are not incremental encoders,
in that their position is not tracked from a known point, and additionally not
absolute as they lose any accumulation through a power cycle.

Unfortunately, these motors are situated at the opposite end of a large gear
reduction from the actual arm system, and may be subject to a large amount
of gear lash. However, as another source of measurement, they are still useful.
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5.3 Kalman Filtering

The Kalman filter is the final piece that allows us to use all of these disparate
sources of state information, of varying accuracy and precision, to find one
unified state estimate.

The Kalman filter exploits the Central Limit Theorem of statistics (that, as
the number of independent sources of noise goes to infinity, the more Gaussian
the resulting distribution is) to make estimates about the ground-truth state of
a system better than any individual measurement. [Veness, 2017] Each source
of data is given standard deviations of noise, and the Kalman filter runs looping
estimation cycles in sequence predict and update. The filter retroactively
modifies the weight it gives to each source of data to minimize the error between
the predicted measurement and the actual measurement.

By using a Kalman filter, with sources of measurements including physics
models and multiple sensors, a highly accurate estimate of arm state can be
derived with little to no phase lag.
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6 System Integration

6.1 Operation Sequence

Estimate robot state

Estimate arm state

Check for new setpoint Select pre-built configuration space
New setpoint

Build node graph

Find path with Dijkstra’s algorithm

Remove unnecessary path steps

Constrain velocity and acceleration of each degree of freedomSample path

No new setpoint

Apply feedforward and feedback control

6.2 Robot State Machine

The physical robot design this control system aims to address needs to avoid
entering undefined or unwanted states. For instance, the floor intake of the
robot needs to be retracted before scoring out the front to avoid violating rules
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on extension from multiple sides of a robot.
The high-level robot code for controlling most if not all subsystems of the

robot will be a form of a finite state machine, in which there are a number of pre-
defined states the robot can enter where different code is executed, determined
transitions between these states, and a mechanism to traverse these states to a
desired state (which ensures the robot never enters a disallowed state).

6.3 Robot-Driver Interaction

Generally, due to the complexity and unconventional response dynamics of the
system, control of the arm is handled in software, rather than by driver, using
the control scheme enumerated previously.

To respond to the unpredictability of an FRC match, we also provide a
method for a driver to control the velocity of the end effector in Cartesian space
using the Jacobian derived in section 2.2 with a joystick.

In the notional driver control scheme, the driver or operator pushes a button
cooresponding to a setpoint to update the desired robot state machine state to
one where the arm reaches that setpoint, or to switch to the velocity control
mode.

7 Conclusion

The control of a double-jointed robotic arm is certainly subject to many con-
siderations and problems to be solved. However, as shown by its extensive use
in both the ”real world” and in education, the problems are not unsolvable by
any measure, and many of them are easier than they appear.

Regardless, it takes a substantial amount of effort to convert what’s written
here into an actual control system on an actual robot.
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