
NixOS for FRC Coprocessors
FRC Team 3636 — Generals Robotics
Max Niederman, Class of 2024
April 17, 2024

Motivation
Year after year, the state of FIRST Robotics software has
increased in sophistication, from the adoption of April-
Tag pose estimation to the increased prevalence of on-
the-fly trajectory generation and pathfinding.

This increase in sophistication has been accompanied
by an increase in computation resource requirements
— far beyond what the aging RoboRIO 2 platform can
provide. This has led to an explosion in the number of
coprocessors on FRC robots. It’s not unusual to see a
robot with half a dozen coprocessors handling various
concerns.

Managing networks of coprocessors is difficult under
any circumstances, but FRC presents a few additional
challenges:

1. Coprocessors have no Internet connectivity while
on a robot network.

2. Violent actuations and collisions with robots have
the potential to inflict physical damage on co-
processor hardware.

3. The densely-packed nature of many FRC robots often
make it physically difficult to access coprocessors,
particularly in the short times between competition
matches.

4. During competitions it is necessary to perform main-
tenance without advance warning and under ex-
treme time constraints.

Because of the difficulty of physical access, the wide
class of issues that disable coprocessors’ SSH servers
become very time-consuming to resolve.

Even with shell access, the lack of Internet connectiv-
ity often hinders maintenance by making it extremely
difficult to install, update, or repair software. Further-
more, there is often a lack of any Internet connection to
coprocessors during competitions, due to the difficulty

of creating an Internet-connected Ethernet network in
a pit.1

1Typically, cellular connections to mobile phones are the only
available Internet connections, and few FRC teams have the time
and expertise to use this as an uplink for a correctly-configured
copper Ethernet network. Making this easier is a possible subject
of future work.

All of these challenges are, of course, further exacer-
bated by the stressful, time-constrained nature of FRC
competitions.

We propose that NixOS, an immutable Linux distribu-
tion built on the principles of pure functional program-
ming, can, in many cases, address and mitigate these
issues significantly better than traditional Linux distri-
butions such as Debian.

Declarative Deployments
Today, coprocessors in FRC are virtually always con-
figured imperatively. Teams first install an operating
system on their coprocessors using a monitor and pe-
ripherals, then they set up login credentials, SSH keys,
etc. Finally, they install FRC-specific software such as a
camera server or pathfinding offloading service. Team-
specific software is most often installed and updated
from source by copying from a local machine and then
building on the coprocessor. This process is then man-
ually repeated for each coprocessor.

This is not, however, the only way to deploy software.
Tools such as Puppet, Chef, and Terraform popularized
declarative configuration and deployment. Rather than
manually running commands to configure the system
and deploy to it, the administrator declares the software
they want on the system and the configuration they
want it to have and the system is automatically driven
to that state.

The declarative system administration paradigm has
numerous advantages: among other things,
• many systems can be managed together, and common

configuration shared between them;

https://nixos.org/
https://www.terraform.io/
https://github.com/chef/chef
https://github.com/chef/chef

• it doesn’t matter what state the system is currently in
(brand-new install, partially broken, etc.), deploying
to it once will bring it to the desired state; and

• declarations can serve as documentation of how sys-
tems are configured, eliminating the need to dig
through /etc.

NixOS
NixOS is one of the most powerful declarative deploy-
ment tools in existence. It uses Nix, a purely functional
build system and package manager, to achieve repro-
ducible and immutable deployments of entire Linux sys-
tems. Although this method has drawbacks, it also has
many benefits.

First, by mounting most parts of the system read-only
and creating new bootloader configurations for each
deployed system configuration, NixOS achieves incred-
ible resilience. Accidental misconfigurations can be
rolled back by selecting the previous configuration dur-
ing boot, and nothing short of erasing the root or EFI
filesystem will permanently break a NixOS system. This
means teams don’t need to worry about their trou-
bleshooting steps (or software) breaking anything.

Second, NixOS systems are stateless. Although Pup-
pet, Chef, Terraform, et. al. attempt to hide the effects
of state, traditional Linux distributions are essentially
stateful and these tools cannot fully reset a system to
a declared configuration. However, with NixOS, teams
get what they declare, nothing more, nothing less.
It is impossible to, for example, forget that some crucial
setting was set imperatively and that the coprocessor
won’t work if you redeploy from a scratch install.

Third, NixOS can generate pre-configured SD card im-
ages, USB installer images, virtual machine images,
Docker containers, and more from system configura-
tions. If a coprocessor breaks, its entire state can be re-
built from a NixOS configuration and flashed straight
to an SD card. With NixOS, provisioning a new co-
processor takes minutes, not hours. Furthermore,
the ability to generate VM images which behave exactly
like physical coprocessors opens up the possibility to
faithfully simulate coprocessors on a developer
machine.

Fourth, there exists a rich ecosystem of packages and
deployment tools for NixOS. Nixpkgs, NixOS’s package
repository, is the most comprehensive package reposi-

tory in existence,2 and NixOS comes built-in with tens

2As of writing, according to Repology’s statistics.

of thousands of configuration options. Team 3636 has
packaged a large variety of FRC software for Nix and
NixOS, which makes installing FRC software as
easy as adding a line to a configuration file.

{
 services.photonvision = {
 # enable the PhotonVision daemon
 enable = true;
 # open the firewall for the web UI
 openFirewall = true;
 };
}

Listing 1: Installing and daemonizing PhotonVision on
a NixOS system.

Similarly, NixOS-based deployment tools like NixOps
and Colmena simplify and automate the process of de-
ploying to large numbers of coprocessors. They also
make it easy to build the system configurations on an
Internet-connected machine and then deploy later, mit-
igating the lack of Internet connection on coprocessors
and allowing teams to update and install software
on coprocessors without ever disconnecting them
from the robot network.

A NixOS Distribution for FRC
FRC teams use a lot of specialty software (WPILib, Path-
Planner, Choreo, PhotonVision, etc.), which isn’t avail-
able in most distributions. For NixOS, we’ve worked to
package a large selection of FRC software and upstream
it into Nixpkgs. In the meantime, we’re maintaining
these packages in an FRC-specific package repository.

Currently, we support the following software on Linux
and Darwin platforms with 64-bit x86 or ARM architec-
tures:

Software Package NixOS Module

PhotonVision ❄ (upstream) ❄ (upstream)

AdvantageScope ✓ (in frc-nix) N/A

Choreo ✓ (in frc-nix) N/A

PathPlanner ✓ (in frc-nix) N/A

PPLibCoprocessor Planned Planned

Glass ✓ (in frc-nix) N/A

Shuffleboard ✓ (in frc-nix) N/A

SmartDashboard ✓ (in frc-nix) N/A

https://nixos.org/guides/how-nix-works
https://repology.org/repositories/statistics/newest
https://github.com/NixOS/nixops
https://github.com/zhaofengli/colmena
https://github.com/FRC3636/frc-nix

DataLogTool ✓ (in frc-nix) N/A

RoboRIOTeam-
NumberSetter

✓ (in frc-nix) N/A

SysID ✓ (in frc-nix) N/A

OutlineViewer ✓ (in frc-nix) N/A

PathWeaver ✓ (in frc-nix) N/A

RobotBuilder ✓ (in frc-nix) N/A

The distribution also contains tools for configuring net-
working settings for typical FRC use, generating in-
staller ISOs, commonly-used administration tools, and
more.

	Motivation
	Declarative Deployments
	NixOS
	A NixOS Distribution for FRC

