
Understanding PID Control
And (Very Basic) Control Theory

Tyler Tian
February 12, 2021

FRC Team Arctos 6135

1

Table of Contents

Introduction
Basic Concepts
Simple Controllers

PID Basics
The PID Equation
The Proportional Term
The Integral Term
The Derivative Term
The Feedforward Term
Putting PIDF Together

Implementation
Tuning PIDs

Manual Tuning Steps
Tuning Tips

The End

2

Introduction

What is a Controller?

Suppose we want to move an arm to a specific position, or spin a motor to an
exact RPM for our shooter. However, we can’t directly control these things; we can
only modify the percentage output. So how do we do it?

We can do this with a controller. In simple terms, a controller drives a variable
(e.g. arm position) to a desired setpoint or reference point (e.g. the desired
position).

3

Basic Concepts

▶ Process Variable/Output (PV) — The variable you’re trying to control, e.g. arm
position, shooter velocity, etc. A function of time commonly denoted y(t).

▶ Setpoint (SP) or Reference — The desired value of the process variable. A
function of time commonly denoted r(t).

▶ Control Output — The output generated by the controller, e.g. percent output.
A function of time commonly denoted u(t).

▶ Error — The difference between the desired (setpoint) and actual values of
the process variable. A variable of time commonly denoted e(t) = r(t)− y(t).

▶ Gain — A constant scaling factor used to tune the controller’s behaviour,
usually determined through experimentation and denoted k.

4

Controllers Revisited

t

y(t)

Ideal Controller Response

A controller attempts to drive the error to zero
by generating a control output, based only on
the setpoint (Open-Loop Control) or the setpoint
and other variables (Closed-Loop/Feedback
Control), often the value of the process variable.

5

Simple Open-Loop Controllers

For an open-loop controller, control output is not based on the current PV value.
Consider controlling a motor’s velocity with the following equation:

u(t) = k · r(t)

We can choose our gain k to be umax
vmax

. However, the max velocity and curve shape
are affected by many other factors (load, battery voltage, motor condition),
making this an approximation at best.

6

Simple Closed-Loop Controllers (Bang-Bang Controllers)

Consider controlling a robot’s position with the simplest of feedback controller —
if desired position is ahead, apply forward throttle; if it’s behind, apply reverse
throttle:

u(t) =


k e(t) > 0

0 e(t) = 0

−k e(t) < 0

An appropriate gain k can be chosen by experimentation. It does the job, albeit
not well. It will almost always overshoot and oscillate. For many simple systems
it’s good enough, but for driving in auto it’s far from perfect.

7

Simple Closed-Loop Controllers (Bang-Bang Controllers)

t

y(t)

Bang-Bang Controller Response

Notice the error quickly approaching zero, then
overshooting and oscillating. This system takes a
long time to stabilize and is not ideal.

8

Can We Do Better?

When a bang-bang controller doesn’t do the job, we can use more complex
controllers.

PID controllers are one such example. A properly tuned PID controller should
reach the setpoint as fast as possible with almost no overshoot.

9

PID Basics

The PID Equation

If you search for ”PID controller” you might come across something like this:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t)

Sometimes there’s also a feedforward term:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t) +Kff(t)

While correct, it looks daunting and not very intuitive. In reality, these terms come
pretty intuitively, as you will soon see.

10

The Proportional Term

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t)

The proportional term generates a control output proportional to the current
error. It drives the error to zero and generates less output as the error decreases.
Slowing down near the setpoint avoids overshooting.

11

P Controller Response

t

y(t)

Theoretical P Controller Response
Assuming a constant setpoint and a linear
relationship between u(t) and dy

dt (rate of change
of PV), we have a differential equation:

dy
dt = k(r − y(t))

If you know your functions well you’ll recognize
this as an exponential decay driving y(t) to r or
e(t) to 0.

12

Steady-State Error

t

y(t)

Actual P Controller Response Since u(t) approaches zero as e(t) approaches
zero, the error asymptotes at 0 (i.e. it approaches
but never reaches 0).

In a real system if u(t) is too small y(t) might not
be affected at all. This creates a steady-state
error, i.e. the system stabilizes before reaching
the setpoint.

13

The Integral Term

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t)

To eliminate steady-state error we can use an integral term. The integral term
produces a control output based on the error accumulated over time.

14

Definition of Integrals

t

y(t)

P Controller Response Recall that an integral is the area under a curve:∫ t

0
e(τ)dτ

is the area under e(τ) for τ from 0 to t. As long
as e(t) is nonzero, this area will keep
accumulating and generating a control output.
This eliminates steady-state error as u(t) will
keep getting larger if there is any error.

15

Integral Windup

t

y(t)

PI Controller Response However, as
∫ t

0
e(τ)dτ and thus u(t) are not

necessarily zero when e(t) = 0, we face the
problem of overshooting.

If a large change in the setpoint creates a
significant initial error, the integral term can only
decrease by overshooting, causing a large
overshoot and oscillations. This is referred to as
integral windup.

16

Saturation

Physical components have limits; you can’t run a motor at 1000% output even if
that’s what the controller outputs. When a part of the controller exceeds its
physical limit, the controller is saturated.

Actuator saturation is a main cause of integral windup (as the actuator is
saturated, the system cannot respond fast enough to decrease the error).
Sometimes we can avoid it by avoiding sudden changes to the setpoint (e.g. with
a motion profile), but sometimes it is unavoidable.

17

Solutions to Integral Windup

When actuator saturation is unavoidable, we can use one of the following
strategies to reduce integral windup:

▶ Disabling the integral until e(t) is within a certain zone (sometimes referred
to as the Integral-Zone or I-Zone);

▶ Preventing the integral from accumulating above a certain bound;
▶ Zeroing the accumulated error when e(t) crosses 0;
▶ Filtering the setpoint so it doesn’t move faster than the system can respond.

Proper tuning and a derivative term can also help.

18

The Derivative Term

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ + Kd

d
dte(t)

Finally, the derivative term can act as a dampener. For a constant setpoint, the
derivative term counteracts the control effort and dampens the response.

19

Definition of Derivatives

t

Error and Derivative

e(t)
de
dt

The derivative of a function f(t), denoted df
dt or

d
dtf(t), is the rate of change (slope) of the
function.

For a constant setpoint, the derivative always
acts against the current trend of the process
variable. This can produce a dampening effect or
slow down overshoot.

20

Dampening Effect Example

t

Error and Derivative

e(t)
de
dt

Consider the blue shaded region; e(t) > 0 so a
positive control output is needed (r(t) > y(t)).
e(t) decreases, creating a negative de

dt acting
against the control effort.

As we overshoot (red region) e(t) continues to
decrease. As r(t) < y(t) we need a negative
output to correct the overshoot. The negative
derivative term now acts against the
overshooting.

21

Dampening Visualization

t

y(t)

PI vs PID

Without D term
With D term

With optimal tuning, the derivative term can
significantly dampen overshoot, at the cost of
initially crossing the setpoint later.

22

Alternative Interpretation

Consider if the setpoint is non-constant (dy
dt ̸= 0):

de
dt = lim

h→0

e(t+ h)− e(t)

h

= lim
h→0

(r(t+ h)− y(t+ h))− (r(t)− y(t))

h

= lim
h→0

(r(t+ h)− r(t))− (y(t+ h)− y(t))

h

= lim
h→0

r(t+ h)− r(t)

h
− lim

h→0

y(t+ h)− y(t)

h

=
dr
dt − dy

dt

23

Alternative Interpretation

We showed that de
dt =

dr
dt −

dy
dt , i.e. the rate of change of the error is equal to the

difference between the rates of change of the setpoint and the process variable.

When we drive de
dt to 0, we’re actually driving dr

dt −
dy
dt to 0, i.e. we’re driving the

difference between rates of change of the setpoint and the process variable to 0.

In effect, the derivative term attempts to make the rate of change of the process
variable match the rate of change of the setpoint.

24

The Feedforward Term

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t) +Kff(t)

In some systems, a feedforward term is also used. The feedforward term is an
open-loop term added to increase the effectiveness of the system based on prior
knowledge of the way the system works.

The definition of f(t) depends on the specific system (”prior knowledge”), but
being an open-loop quantity, it does not depend on the value of e(t) or y(t).

25

Feedforward Term Example

Consider two different feedforward terms for two different applications:

▶ Controlling the speed of a motor: Faster speeds lead to more friction/drag,
so a higher setpoint will always require more output. We can define
f(t) = r(t) so increasing the setpoint increases the control output.

▶ Controlling the angle of an arm: A more horizontal position means more
torque is needed to counteract gravity. We can define f(t) = sin(r(t)) so
angles further from vertical generate more output.

In both cases the feedforward term is defined in terms of r(t) based on the way
the system operates.

26

Putting PIDF Together

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d
dte(t) +Kff(t)

▶ The proportional term Kpe(t) corrects for current error.

▶ The integral term Ki

∫ t

0
e(τ)dτ corrects for past error.

▶ The derivative term Kd
d
dte(t) corrects for future error.

▶ The feedforward term Kff(t) is a system-dependent open-loop term that
aids the closed-loop terms.

27

Implementation

Example Implementation

In the next slides there will be an example implementation in Java.

This example is for demonstration purposes only. In reality you’ll rarely have to
implement a PID controller yourself (typically already done at the hardware level
or in another library).

For the sake of simplicity, we skipped certain features like resetting the integral to
prevent windup.

28

Example Implementation i

1 /**
2 * An example PID(F) controller implementation.
3 */
4 public class PID {
5 // Gains and setpoint
6 private double kP, kI, kD, kF, setpoint;
7 // Timestamp of the last control loop run, used to calculate time difference between runs
8 private long lastTime;
9 // Error in the last control loop run (used for derivative and integral) and current integral value

10 private double lastError, integral;
11
12 /**
13 * Create a new controller object.
14 *
15 * @param p Proportional gain
16 * @param i Integral gain
17 * @param d Derivative gain
18 */
19 public PID(double p, double i, double d) {
20 this(p, i, d, 0);
21 }
22

29

Example Implementation ii

23 /**
24 * Create a new controller object with feedforward gain.
25 *
26 * @param p Proportional gain
27 * @param i Integral gain
28 * @param d Derivative gain
29 * @param f Feedforward gain
30 */
31 public PID(double p, double i, double d, double f) {
32 kP = p;
33 kI = i;
34 kD = d;
35 kF = f;
36 }
37
38 /**
39 * Set the setpoint of the controller.
40 *
41 * @param r The new setpoint
42 */
43 public void setSetpoint(double r) {
44 setpoint = r;

30

Example Implementation iii

45 }
46
47 /**
48 * Initialize the controller.
49 *
50 * Setpoint should be set before this using {@link #setSetpoint(double)}.
51 * Needs to be called before {@link #run(double)}.
52 *
53 * @param y The current value of the process variable
54 */
55 public void init(double y) {
56 integral = 0;
57 lastError = setpoint - y;
58 lastTime = System.nanoTime();
59 }
60
61 /**
62 * Run the control loop for one iteration.
63 *
64 * @param y The current value of the process variable
65 * @return The control output
66 */

31

Example Implementation iv

67 public double run(double y) {
68 // Calculate error, current time, and change in time
69 double e = setpoint - y;
70 long t = System.nanoTime();
71 double dt = (t - lastTime) / 1.0e9;
72 // Approximate integral using a riemann sum
73 integral += lastError * dt;
74 // Approximate derivative using the slope of a secant
75 double derivative = (e - lastError) / dt;
76
77 lastTime = t;
78 lastError = e;
79 return kP * e + kI * integral + kD * derivative + kF * setpoint;
80 }
81 }

32

Tuning PIDs

Tuning PIDs

PIDs only work if your gains are chosen well. The process of choosing and
adjusting gains is called tuning. This is what you’ll actually be doing a lot of the
time when working with PIDs.

Many advanced techniques and tools for PID tuning exist, but often manual
tuning suffices and sometimes you have no choice. It comes with experience but
the series of steps listed are one common way to do it.

33

Manual Tuning Steps

We’ll be tuning the system by analyzing its response to a disturbance or sudden
change in the setpoint. Always begin by setting all gains to 0.

If using a feedforward term, start with Kf first. You can often start with a
calculated value, e.g. for a velocity control with Kfr(t) as feedforward you can
use umax

vmax
.

34

Manual Tuning Steps

t

y(t)

Steps 1-3
1. Increase Kp until the system oscillates upon
disturbance.

2. Increase Kd until oscillations go away.
3. If desired, repeat the previous two steps
until increasing Kd no longer stops
oscillations, and set it to the largest stable
value.

35

Manual Tuning Steps

t

y(t)

Step 4

4. If there is steady-state error or response is
slow, increase Ki until steady-state error is
eliminated or response is fast enough.

36

Magnitudes of Gains

The magnitudes of your gains depends on the units of y(t), time, and other
factors. In general, most of the time these will be true:

▶ Kp will be a few orders of magnitude below 1.
▶ Ki will be much smaller than Kp.
▶ Kd depends on the unit of time and usually has an order of magnitude
between that of Kp and Ki.

▶ All gains are almost always positive.

37

Effects of Adjusting Gains

When tuning, keep in mind the effect of adjusting each gain:

▶ Increasing Kp will decrease the response time if the controller is not
saturated. Too much Kp can cause oscillations as a result of momentum.

▶ Increasing Ki will also decrease the response time and eliminate
steady-state error. Too much Ki leads to integral windup and oscillations
worse than Kp.

▶ Increasing Kd will dampen oscillations but also increase the response time.
Too much Kd leads to slow responses (overdamping) and very high Kd

values also cause oscillation.

38

The End

Thank You for Listening!

By now you should have learned the basics of PID theory and applications.

PIDs are a part of the much larger branch of applied mathematics called Control
Theory. These are only the basics of the basics, but sufficient for FRC. Check out
other control theory topics if you’re interested.

39

	Title
	Table of Contents
	Introduction
	Basic Concepts
	Simple Controllers

	PID Basics
	The PID Equation
	The Proportional Term
	The Integral Term
	The Derivative Term
	The Feedforward Term
	Putting PIDF Together

	Implementation
	Tuning PIDs
	Manual Tuning Steps
	Tuning Tips

	The End

