THE ROBONAUTS

2023 TECHNICAL SINDER

TABLE OF CONTENTS

INTRODUCTION

Overview	1
The Robonauts Goals	1
Season Statistics	2
II. ECHO	
Chassis	4
Arm	5
Intake	6
Forks	7
End Effector	8
"Blooper"	9
"Swiper"	10
Avionics	11
Software	12

OVERVIEW

The Robonauts were founded 27 years ago, based on a partnership between NASA's Johnson Space Center and Clear Creek Independent School District. During the 2023 season our team of 66 students and 19 mentors competed at 6 events during the official Charged Up season.

ROBONAUTS' GOALS

- 1. Educate our students in the field of engineering
- 2. Engage our community in engineering and STEM education
- 3. Field a competitive team
- 4. Grow and nurture the Robonauts' Family

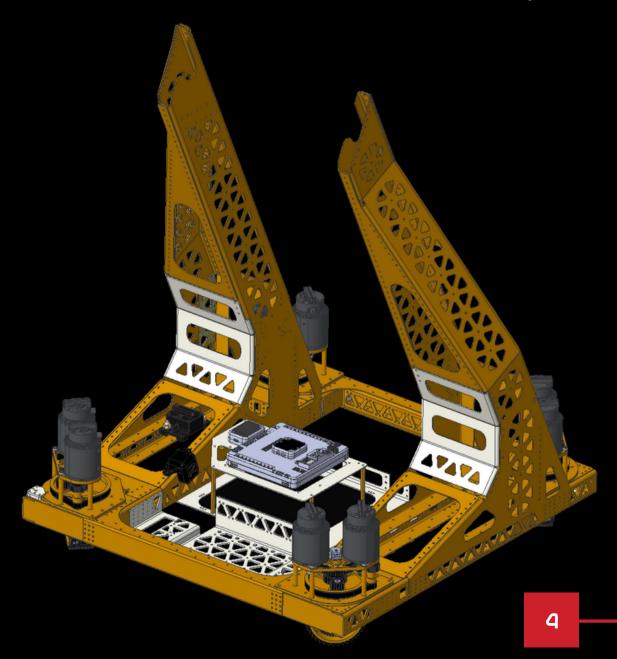
SEASON STATISTICS

104 MATCHES PLAYED

Most of any team during the 2023 official season

NUNIQUE ALLIANCE PARTNERS

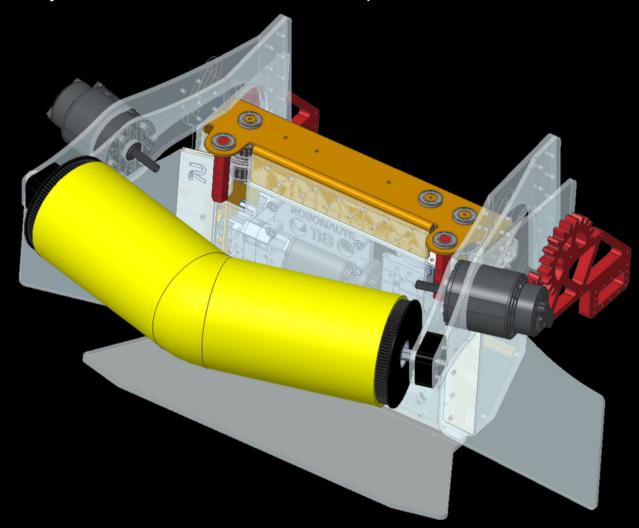
7 BLUE 3/NNERS



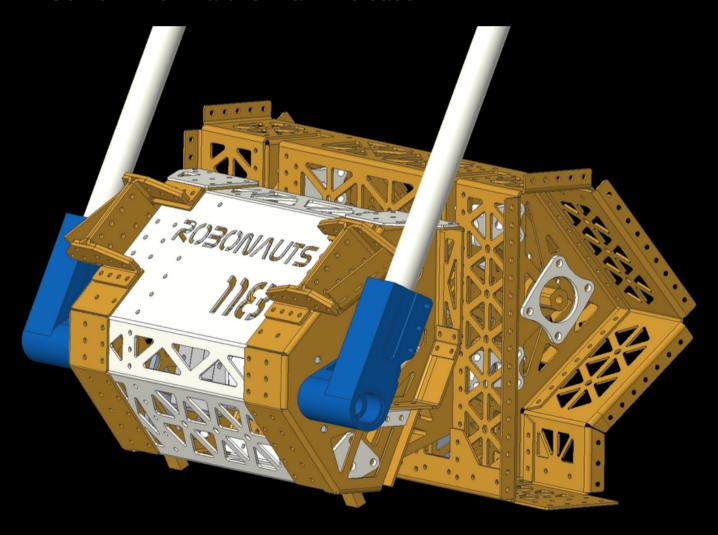
BUILT FOR THE 2023 FIRST ROBOTICS COMPETITION GAME "CHARGED UP"

CHASSIS

- 26" X 26" Frame
- · Custom Sheet Metal and Billet Chassis
- Swerve Drive Specialties Mk4 Modules
- Modules Mounted "Backwards" to Increase Robot Footprint for Greater Stability
- · L2 Gear Ratio
- 1/16" Aluminum Sheet Metal Superstructure
- Stainless Steel Ballast Plate to Lower Center-of Gravity



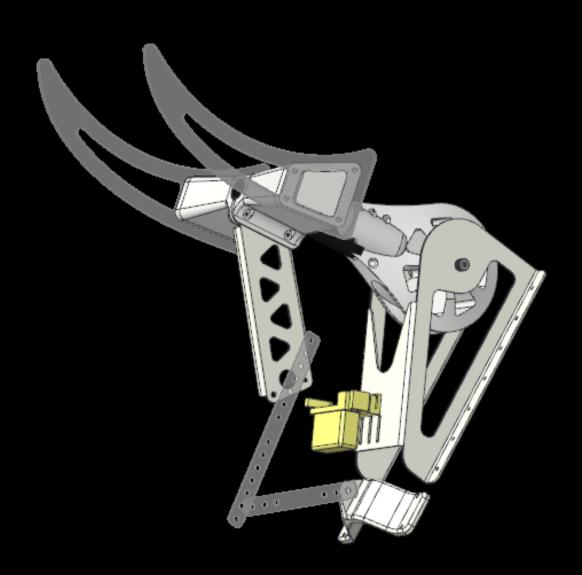
- 118:1 Falcon 500 Driven Pivot
- 15.58:1 Falcon 500 Driven Telescope
- Shimmed Hex Interfaces to Minimize Backlash
- 0.040" Aluminum Sheet Metal Construction
- Lightweight Carbon Fiber Telescope Tubes
- Extensive Use of Markforged Printed Components


INTVKE

- Vector Roller + Dustpan Intake
- · Custom Waterjet Grout Sponge Wheels over Pool Noodle Roller
- 6.25:1 Double Falcon 500 Driven Intake Roller
- 60:1 Falcon 500 Driven Intake Pivot
- 40:1 Falcon 500 Driven Cone Centering "Flappers"
- · Cone Detection Camera
- Waterjet Sector Gears for Intake Deploy
- Bent Polycarbonate Construction for Impact Resistance

FORKS

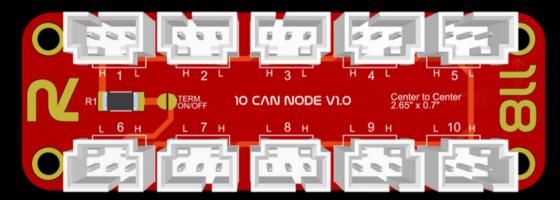
- 3/4" Solid Carbon Fiber Rods to Fit Under Alliance Partner
- Non-Parallel Four-Bar Linkage to Lift and Tilt Robot Away from Floor
- 230:1 Falcon 500 Driven Lift
- 28:1 Falcon 500 Driven Fork Deploy
- Driver Feedback Camera for Alignment
- CNC Machined Over-Center Linkage for Fork Deploy
- 1/16" Aluminum Sheet Metal Structure for Lift Carriage
- Servo Driven Ratchet Pawl Release

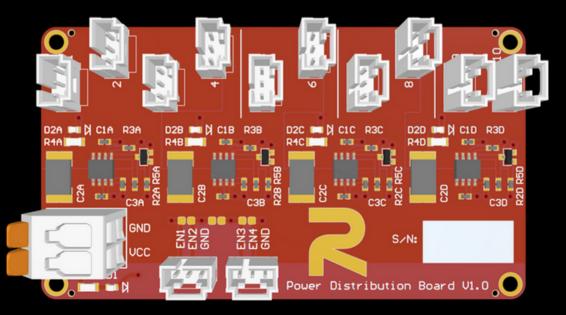

END EFFECTOR

- Double Rollers Driven by a Falcon 500
- · Rollers are Dead Axle Carbon Fiber Tubes to Minimize Weight
- 3D Printed Clamps to Attach End Effector to Arm Telescope
- Rollers Covered in High Temperature Silicone Tubing
- Primarily Plastic Structure to Save Weight

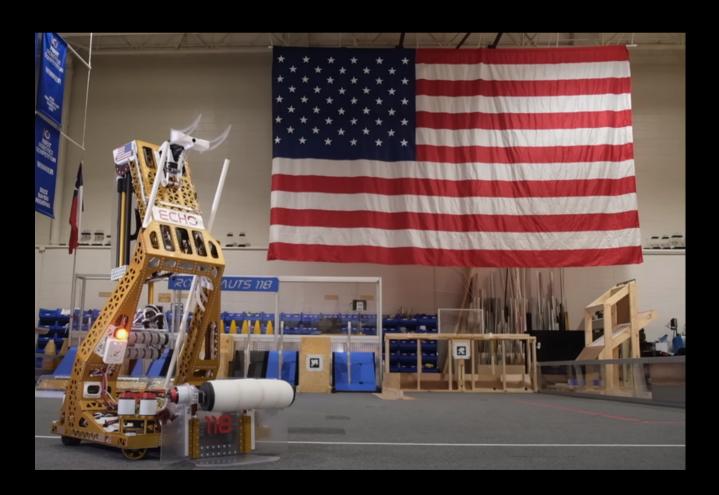
"3L007ER"

- Single Use Catapult for Match Pre-Load Cube
- Adjustable Extension Spring for Launch Power
- Servo Driven Pin-Puller Release
- Adjustable Hard-Stop Linkage
- 100% Accuracy at Championship Events


"SWIPER"


- Dual Suction Cup Cube Intake
- Suction Cups Mounted Within Frame Perimeter
- Used for "Swiping" Cubes from Opponents Loading Zone
- Each Suction Cup Connected to their own Vacuum Pump
- COTS Vacuum Pumps Driven by 775 Redline Motors
- Developed in 3 Days Between the Houston District Event and the Space City District Event

AVIONICS


- 10 Channel CAN Node
 - Custom CAN Bus Board to Implement Star Topology
 - One Channel Per Device
 - Optional On-Board Termination
- Intelligent Power Distribution Unit
 - Power Distribution to Low-Current Devices (CANcoders, Limelight, Pigeon, etc.)
 - 4 Switchable Channels using roboRIO DIO Ports
 - Short-Circuit Protection
 - Over-Current Protection
 - Over-Temperature Protection
 - Soft-Start for Current Inrush

SOFTWARE

- Robot Programmed in C++
- Lua Scripted Autonomous and Driver Sequences
- Team Developed Swerve Code and Path Planning
- · Autonomous Charge Station Balancing using Gyro PID Algorithm
- Hybrid Driver/Autonomous Commanding
 - Driver Controls Translation
 - Vision Tracking Camera Controls Orientation when Locked On

