
234 Appendix C. Linear-quadratic regulator

Following reference input matrix
The feedback control law above makes the open-loop system behave like Aref , but the input dynam-
ics are still that of the original system. Here’s how to make the input dynamics behave like Bref . We
want to find the uimf,k that makes the real model follow the reference model.

xk+1 = Axk +Buimf,k

zk+1 = Arefzk +Brefuk

Let x = z.

xk+1 = zk+1

Axk +Buimf,k = Arefxk +Brefuk

Buimf,k = Arefxk −Axk +Brefuk

Buimf,k = (Aref −A)xk +Brefuk

uimf,k = B†((Aref −A)xk +Brefuk)

uimf,k = −B†(A−Aref )xk +B†Brefuk

The first term makes the open-loop poles match that of the reference model, and the second term
makes the input behave like that of the reference model.

C.4 Time delay compensation
Linear-Quadratic regulator controller gains tend to be aggressive. If sensor measurements are time-
delayed too long, the LQR may be unstable (see figure C.1). However, if we know the amount of
delay, we can compute the control based on where the system will be after the time delay.

We can compensate for the time delay if we know the control law we’re applying in future timesteps
(u = −Kx) and the duration of the time delay. To get the true state at the current time for control
purposes, we project our delayed state forward by the time delay using our model and the aforemen-
tioned control law. Figure C.2 shows improved control with the predicted state.2

Figure C.1: Elevator response at 5 ms sample
period with 50 ms of output lag

Figure C.2: Elevator response at 5 ms sam-
ple period with 50 ms of output lag (delay-
compensated)

2Input delay and output delay have the same effect on the system, so the time delay can be simulated with either an
input delay buffer or a measurement delay buffer.



C.4 Time delay compensation 235

For steady-state controller gains, this method of delay compensation seems to work better for second-
order systems than first-order systems. Figures C.3 and C.5 show time delay for a drivetrain velocity
system and flywheel system respectively. Figures C.4 and C.6 show that compensating the controller
gain significantly reduces the feedback gain. For systems with fast dynamics and a long time delay,
the delay-compensated controller has an almost open-loop response because only feedforward has a
significant effect; this has poor disturbance rejection. Fixing the source of the time delay is always
preferred for these systems.

Figure C.3: Drivetrain velocity response at 1 ms
sample period with 40 ms of output lag

Figure C.4: Drivetrain velocity response at 1 ms
sample period with 40 ms of output lag (delay-
compensated)

Figure C.5: Flywheel response at 1 ms sample
period with 100 ms of output lag

Figure C.6: Flywheel response at 1 ms sam-
ple period with 100 ms of output lag (delay-
compensated)

Since we are computing the control based on future states and the state exponentially converges to
zero over time, the control action we apply at the current timestep also converges to zero for longer
time delays. During startup, the inputs we use to predict the future state are zero because there’s
initially no input history. This means the initial inputs are larger to give the system a kick in the right
direction. As the input delay buffer fills up, the controller gain converges to a smaller steady-state
value. If one uses the steady-state controller gain during startup, the transient response may be slow.

All figures shown here use the steady-state control law (the second case in equation (C.15)).

We’ll show how to derive this controller gain compensation for continuous and discrete systems.



236 Appendix C. Linear-quadratic regulator

C.4.1 Continuous case
The undelayed continuous linear system is defined as ẋ = Ax(t)+Bu(t) with the controller u(t) =
−Kx(t). Let L be the amount of time delay in seconds. We can avoid the time delay if we compute
the control based on the plant L seconds in the future.

u(t) = −Kx(t+ L)

We need to find x(t+ L) given x(t). Since we know u(t) = −Kx(t) will be applied over the time
interval [t, t+ L), substitute it into the continuous model.

ẋ = Ax(t) +Bu(t)

ẋ = Ax(t) +B(−Kx(t))

ẋ = Ax(t)−BKx(t)

ẋ = (A−BK)x(t)

We now have a differential equation for the closed-loop system dynamics. Take the matrix exponential
from the current time t to L in the future to obtain x(t+ L).

x(t+ L) = e(A−BK)Lx(t) (C.10)

This works for t ≥ L, but if t < L, we have no input history for the time interval [t, L). If we
assume the inputs for [t, L) are zero, the state prediction for that interval is

x(L) = eA(L−t)x(t)

The time interval [0, t) has nonzero inputs since it’s in the past and was using the normal control law.

x(t+ L) = e(A−BK)tx(L)

x(t+ L) = e(A−BK)teA(L−t)x(t) (C.11)

Therefore, equations (C.10) and (C.11) give the latency-compensated control law for all t ≥ 0.

u(t) = −Kx(t+ L)

u(t) =

{
−Ke(A−BK)teA(L−t)x(t) if 0 ≤ t < L

−Ke(A−BK)Lx(t) if t ≥ L
(C.12)

C.4.2 Discrete case
The undelayed discrete linear system is defined as xk+1 = Axk + Buk with the controller uk =
−Kxk. Let L be the amount of time delay in seconds. We can avoid the time delay if we compute
the control based on the plant L seconds in the future.

uk = −Kxk+L/T

We need to find xk+L/T given xk. Since we know uk = −Kxk will be applied for the timesteps k
through k + L

T , substitute it into the discrete model.

xk+1 = Axk +Buk



C.4 Time delay compensation 237

xk+1 = Axk +B(−Kxk)

xk+1 = Axk −BKxk

xk+1 = (A−BK)xk

Let T be the duration between timesteps in seconds and L be the amount of time delay in seconds.
L
T gives the number of timesteps represented by L.

xk+L/T = (A−BK)
L
T xk (C.13)

This works for kT ≥ L where kT is the current time, but if kT < L, we have no input history for
the time interval [kT, L). If we assume the inputs for [kT, L) are zero, the state prediction for that
interval is

xL/T = A
L−kT

T xk

xL/T = A
L
T
−kxk

The time interval [0, kT ) has nonzero inputs since it’s in the past and was using the normal control
law.

xk+L/T = (A−BK)kxL/T

xk+L/T = (A−BK)kA
L
T
−kxk (C.14)

Therefore, equations (C.13) and (C.14) give the latency-compensated control law for all t ≥ 0.

uk = −Kxk+L/T

uk =

{
−K(A−BK)kA

L
T
−kxk if 0 ≤ k < L

T

−K(A−BK)
L
T xk if k ≥ L

T

(C.15)

If the delayL isn’t a multiple of the sample period T in equation (C.15), we have to evaluate fractional
matrix powers, which can be tricky. Eigen (a C++ library) supports fractional powers with the pow()
member function provided by <unsupported/Eigen/MatrixFunctions>. scipy (a Python li-
brary) supports fractional powers with the free function scipy.linalg.fractional_matrix_power().
If the language you’re using doesn’t provide such a function, you can try the following approach in-
stead.

Let there be a matrix M raised to a fractional power n. If M is diagonalizable, we can obtain an
exact answer for Mn by decomposing M into PDP−1 where D is a diagonal matrix, computing
Dn as each diagonal element raised to n, then recomposing Mn as PDnP−1.

If a matrix raised to a fractional power in equation (C.15) isn’t diagonalizable, we have to approximate
by rounding L

T to the nearest integer. This approximation gets worse as L mod T approaches T
2 .


	Preface
	0 Notes to the reader
	0.1 Prerequisites
	0.2 Structure of this book
	0.3 Ethos of this book
	0.3.1 Role of classical control theory
	0.3.2 An integrated approach to nonlinear control theory

	0.4 Mindset of an egoless engineer
	0.5 Request for feedback

	Part I — Fundamentals of control theory
	1 Control system basics
	1.1 Nomenclature
	1.2 What is gain?
	1.3 Block diagrams
	1.4 Why feedback control?

	2 PID controllers
	2.1 Proportional term
	2.2 Derivative term
	2.3 Integral term
	2.4 PID controller definition
	2.5 Response types
	2.6 Manual tuning
	2.7 Limitations

	3 Application advice
	3.1 Mechanical solutions vs software solutions
	3.2 Actuator saturation

	4 Calculus
	4.1 Derivatives
	4.2 Integrals
	4.3 Tables


	Part II — Modern control theory
	5 Linear algebra
	5.1 Vectors
	5.2 Linear combinations, span, and basis vectors
	5.3 Linear transformations and matrices
	5.4 Matrix multiplication as composition
	5.5 The determinant
	5.6 Inverse matrices, column space, and null space
	5.7 Nonsquare matrices as transformations between dimensions
	5.8 Eigenvectors and eigenvalues
	5.9 Miscellaneous notation
	5.10 Matrix calculus

	6 State-space controllers
	6.1 From PID control to model-based control
	6.2 What is a dynamical system?
	6.3 State-space notation
	6.4 Eigenvalues and stability
	6.5 Controllability
	6.6 Observability
	6.7 Closed-loop controller
	6.8 Pole placement
	6.9 Linear-quadratic regulator
	6.10 Model augmentation
	6.11 Feedforward
	6.12 Integral control

	7 Digital control
	7.1 Phase loss
	7.2 s-plane to z-plane
	7.3 Discretization methods
	7.4 Effects of discretization on controller performance
	7.5 Taylor series
	7.6 Matrix exponential
	7.7 Zero-order hold for state-space
	7.8 Numerical integration methods

	8 Nonlinear control
	8.1 Introduction
	8.2 Linearization
	8.3 Lyapunov stability
	8.4 Affine systems
	8.5 Further reading

	9 State-space applications
	9.1 Elevator
	9.2 Flywheel
	9.3 Single-jointed arm
	9.4 Pendulum
	9.5 Holonomic drivetrains
	9.6 Differential drive
	9.7 Ramsete unicycle controller
	9.8 Linear time-varying unicycle controller


	Part III — Estimation and localization
	10 Stochastic control theory
	10.1 Terminology
	10.2 State observers
	10.3 Introduction to probability
	10.4 Linear stochastic systems
	10.5 Two-sensor problem
	10.6 Kalman filter
	10.7 Kalman smoother
	10.8 Extended Kalman filter
	10.9 Unscented Kalman filter
	10.10 Multiple model adaptive estimation

	11 Pose estimation
	11.1 Euler integration
	11.2 Pose exponential
	11.3 Pose correction


	Part IV — System modeling
	12 Dynamics
	12.1 Linear motion
	12.2 Angular motion
	12.3 Vectors
	12.4 Curvilinear motion
	12.5 Differential drive kinematics
	12.6 Mecanum drive kinematics
	12.7 Swerve drive kinematics

	13 Newtonian mechanics examples
	13.1 DC brushed motor
	13.2 Elevator
	13.3 Flywheel
	13.4 Single-jointed arm
	13.5 Pendulum
	13.6 Differential drive

	14 Lagrangian mechanics examples
	14.1 Pendulum
	14.2 Cart-pole

	15 System identification
	15.1 Ordinary least squares
	15.2 1-DOF mechanism feedforward model
	15.3 1-DOF mechanism state-space model
	15.4 Drivetrain velocity state-space model


	Part V — Motion planning
	16 Motion profiles
	16.1 1-DOF motion profiles
	16.2 2-DOF motion profiles

	17 Configuration spaces
	17.1 Introduction
	17.2 Waypoint planning
	17.3 Waypoint traversal
	17.4 State machine validation with safe sets

	18 Trajectory optimization

	Part VI — Classical control theory
	19 Transfer functions
	19.1 Laplace transform
	19.2 Parts of a transfer function
	19.3 Transfer functions in feedback
	19.4 Classical vs modern control

	20 Laplace domain analysis
	20.1 Projections
	20.2 Fourier transform
	20.3 Laplace transform
	20.4 Laplace transform definition
	20.5 Case study: steady-state error
	20.6 Case study: flywheel PID control
	20.7 Gain margin and phase margin


	Part VII — Appendices
	A Simplifying block diagrams
	A.1 Cascaded blocks
	A.2 Combining blocks in parallel
	A.3 Removing a block from a feedforward loop
	A.4 Eliminating a feedback loop
	A.5 Removing a block from a feedback loop

	B Installing Python packages
	B.1 Windows instructions
	B.2 Linux instructions

	C Linear-quadratic regulator
	C.1 Derivation
	C.2 State feedback with output cost
	C.3 Implicit model following
	C.4 Time delay compensation

	D QR-weighted linear plant inversion
	D.1 Setup
	D.2 Minimization

	E Steady-state feedforward
	E.1 Continuous case
	E.2 Discrete case
	E.3 Deriving steady-state input

	F Derivations
	F.1 Transfer function in feedback
	F.2 Zero-order hold for linear state-space system
	F.3 Kalman filter as Luenberger observer

	Glossary
	Bibliography
	Online

	Index


