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ABSTRACT

In this paper, we present an improvement to Offensive Power Rating (OPR), a popular linear regression
model for assessing team performance at a given event. One key assumption of linear regression is the
independence of the errors, but in the FIRST Robotics Competition (FRC) context, this assumption is
not exactly true. Using data from all district events between 2009 and 2024, we model the unweighted
errors as a function of tournament progression and generate weightings to improve the regression fit
through Weighted Least Squares. The best weightings show that the most representative matches for
a team’s overall performance are midway through the tournament. That is, the real clutch matches
are in the middle.

1 Introduction

Every FRC qualification match consists of six randomly selected robots divided into two opposing alliances of three
teams each. To strategize effectively and play to each robot’s strengths, teams frequently need to make convenient,
flexible, and accurate estimations of their partners’ overall performance without relying on large amounts of scouted,
robot-level data. OPR uses linear regression to estimate how many points an individual robot contributes to an alliance
in any given match 1.

1.1 Background

Since Karthik Kanagasabapathy and Ian Mackenzie of FRC team 1114 developed "calculated contribution" in 2004,
teams have been using linear regression to measure a team’s scoring ability. Calculated contribution, generally
considered the first application of linear regression in FRC, provides a less random method of analysis than average
score by accounting for alliance partners. The first public description [1] of similar linear algebra came in 2006 from
Scott Weingart of FRC team 293 on a Chief Delphi post which coined the term "Offensive Power Rating". Weingart’s
terminology for linear regression in FRC rose to popularity, commonly abbreviated as OPR. However, the usual
formulation for the regression design matrix uses teams on the columns and matches on the rows (as described by
Karthik [2]), where Weingart’s formulation used teams on both the rows and the columns. In 2017, Eugene Fang
detailed the math behind OPR in a blog post for TheBlueAlliance [3] ("TBA"), which has become the standard definition
of linear regression for FRC.

1.2 OPR as Linear Regression

By definition, OPR is a multiple linear regression. To see this, reference Section 5.2 (pg 130-133) of Sheather [4], which
shows the calculation behind multiple linear regression. Looking at the solved equation for β, β̂ = (X ′X)−1X ′Y , we
see that the TBA blog solved equation to find OPR, x = M−1s, follows a very similar structure. With β and x as the
OPR value, M and (X ′X) as the vector of alliance lineups, and s and X ′Y as the vector of alliance scores, Sheather’s
and TBA’s explanations are identical. See [5] for a demonstration of the equivalence on data.

1.3 Motivation

Other metrics have so far proven more effective than OPR for match prediction [6], in large part because they incorporate
historical data. For a simplified example: knowing that FRC team 254 has won 5 world championships is very relevant
to making a good prediction about their performance in a given match. However, regression does not consider data from
previous seasons or previous events. OPR will not see a difference between a multiple world champion and playoff
bubble team unless it is given match data from the relevant event. This highlights the primary value of regression
methods in FRC: summarizing team performance at a given event.2 To improve the quality of our estimate, we can
focus on the model’s assumptions and their validity in an FRC context.

One of the key assumptions of linear regression is that the errors εi are independent and identically distributed with
constant variance. That is, the prediction error for each match does not depend on any other matches, and that the spread
of the errors does not change over the course of a tournament. In FRC, this is mostly true: matches are well isolated
from each other, and the challenges that teams face over the course of the event do not change on average. However,
teams do gain experience over the course of the event, make adjustments, and change strategies. Anecdotally, teams

1We will refer to a match as a qualification match competed by a particular alliance.
2This isn’t to say we should disregard match prediction! Match prediction is extremely useful as an empirical test for our methods;

but if the goal is accurate match prediction, regression is not the best tool available.
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"settle in" to their most representative performance after their first few matches, with earlier matches contributing less to
overall performance. This dynamic likely influences the distribution of the errors so that it is not constant. Accounting
for this non-constant error could improve the linear approximation of team quality.

1.4 Weighted Least Squares

Weighted Least Squares (WLS) is a statistical method used to improve regressions by modeling nonconstant residual
variance. This method requires the user to know the variance structure of the response in order to model nonconstant
variance - or to have a good approximation of it. Typically for cases that cannot be resolved by a transformation, each
row of the design matrix is weighted proportional to the inverse variance of the errors (pg. 96, 97 [7]), giving less
weight to the less precise observations. This theoretical quantity is usually best approximated by the inverse variance of
the residuals3.

WLS is generally implemented by dividing the diagonal of the regression covariance matrix by the weights, which
directly downweights the least precise observations. This has computational advantages because it deals directly with
the regression formulation. However, WLS can be equivalently implemented [8] by "row-replication", which duplicates
rows an integer number of times to represent the additional weight placed on that row. This equivalent formulation
highlights the intuition behind weighted least squares: putting additional importance on each row of the design matrix
proportional to the size of the weight. Row-replication also has a flexibility advantage. Applying the weights to the
covariance matrix requires a regression setting, while row-replication can be applied without the context of regression.

2 Methods

2.1 Data

Our analysis used qualification match data (alliance lineups and final total scores) from every district event that occurred
between 2009 and 2024. Districts have exactly twelve qualification matches for each team, which makes comparison
between events more consistent. To ensure that scores are comparable across different years, we standardized the scores
of each event.

2.2 Weight Optimization

WLS allows us to remove the assumption of residual independence, if we can appropriately weight the rows of the
design matrix. This means that we need a principled way to find weights that describe the distribution of the residuals.
We computed descriptive weights in two ways: residual variance binning and linear weight smoothing. While each way
provided a different set of weights, the second (linear weight smoothing), extends the first (residual variance binning).

2.2.1 Residual Variance Binning

Optimal weights for WLS are proportional to the inverse variance (see [7] pg. 97) of the error for that data point. To
approximate this, we calculate the variance of the residuals of the unweighted linear model in six sequential bins. To
bin the residuals, we give each match a "match percentile", which is match_number

n_matches ; intuitively, this is the percentage of
progress through the tournament at which the match takes place. Then, we evenly divide the alliance-matches into six
bins based only on their match percentile. Since each team plays twelve matches, six bins allows for an average of two
matches from each team to be in each corresponding bin. This balances the granularity to avoid hyper-analyzing the
differences or failing to recognize the trend.

Taking the variance of the residuals in each bin provides a numerical way to measure the reliability of OPR. To reflect
the general trend of the residuals with a unique set of weights, we take the reciprocal of each binned variance.

2.2.2 Linear Weight Smoothing

Variance binning directly approximates the model’s variance; but this could under-smooth and overfit the data. To
mitigate this, we also compute linearly smoothed weights, taking the linear regression of the residual variances. Linear
weight smoothing significantly reduces the number of weight combinations to test on the OPR model when trying to
find the optimal set of weights, providing a more efficient process than residual variance binning in most cases.

3A residual is defined as the difference between the value predicted by a linear regression model and the observed (true) value.
The residual in our context is the difference between the score predicted by OPR and the actual alliance score.
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Figure 1: Leave One Out Cross Validation Diagram

Linear weight smoothing continues from where variance binning leaves off. By graphing the residual variances against
event progression percentile, we can then fit an appropriate function onto the coordinate points. With the residual
variances "smoothed" with linear approximation, we then obtain the six variances (one for each bin) projected by
residual variance graph. The reciprocals of the projected residual variances join to form a set of weights unlike the
weights provided by variance binning.

2.3 Weight Evaluation

To find the best weights, we are interested in risk, a model’s error on the test data, rather than its loss, a model’s error on
the training data. We utilized two methods to evaluate the weighted OPR model, both of which make judgments based
on the risk produced by both the weighted and unweighted OPR models. The key difference between the two methods
is how the risks are calculated.

For both methods, to contextualize the performance of the weighted model against the unweighted model, we take the
ratio Runweighted

Rweighted
, where R is some estimate of a model’s risk. This represents how much the weighted model improves

on the unweighted model; since a higher risk is worse (higher error), we can interpret this ratio as a proportion.

2.3.1 Test Mean Squared Error

Mean squared error (MSE) is a measure that can adequately characterize the accuracy of a model. We calculate MSE by
taking the average of the squared residual variances.

MSE only measures the error of a model applied on a fixed and complete dataset. Consequently, it becomes vulnerable
to overfitting and does not evaluate models based on their ability to make predictions for unseen data. We are interested
in using methods that do a better job of estimating our model’s prediction risk, rather than just its in-sample MSE.
Test-set cross validation is a method that avoids these issues by splitting data into a training and testing set; we train the
model only on the training data, reserving the testing data to evaluate the model.

Combining both of these methods leads to test MSE, which is the MSE of only the test set. However, withholding a test
set sacrifices a decent proportion of the complete data for training, resulting in high variance.

2.3.2 Leave-One-Out Cross Validation

Leave-One-Out Cross Validation (LOOCV) is another effective risk estimate from machine learning. Like test MSE,
LOOCV splits the data into a test and training set, but instead uses only one data point as the test set. This method
trains and produces a linear regression model using all but one of the matches in an FRC event (e.g. in a 160-match
event, 159 matches are used for training). It then tests the trained model by predicting the omitted match’s score and
recording the residual. LOOCV repeats this process for each match in the event so every match is tested once. We
prefer LOOCV over test MSE because it uses nearly all of the data, therefore maintaining low variance. LOOCV is
detailed visually in 1 and mathematically in pages 200-203 of [7].
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Figure 2: Simple Linear Regression on Raw OPR Residuals by Match Percentile

3 Results

3.1 Exploratory Data Analysis

Figure 2 shows the linear relationship between the qualification match percentile and the resulting squared residual.
The line of best fit has a slope of -0.031 (p < 0.001), demonstrating that qualification matches that occur later in the
tournament have smaller squared residuals. The negative slope means that on average, the error decreases as match
percentile increases, which confirms a measurable relationship between match percentile and the residual produced.
This supports our assertion that weighting reduces variance by determining how important each match is and assigning
its appropriate relevance in calculations. Figure 2 confirms the advantage of weighting late-tournament matches more
heavily by observing how they have slightly less variance overall, thus reducing error and improving predictions.

3.2 Weight Estimation

In Figure 3a, the residual variance is plotted for each of the six bins. These values represent the spread of error within
each bin. The smaller this spread, the more consistent the unweighted OPR residuals. Overall, we see a parabolic
trend: the residual variances are very high towards the beginning (bins 1 and 2), low towards the middle (bins 3 and 4),
and increase somewhat again towards the end of the tournament (bins 5 and 6). This means that the unweighted OPR
estimations are the least consistent at the extremes of a tournament, especially at the beginning. Hence, OPR should
be given more weight for matches that fall in bins 3 and 4, and less weight for matches that lie further towards the
beginning or end of the tournament. Linear weight smoothing produces a v-shaped variance graph with the reciprocals
of the estimated weights, as shown in 3b.

3.3 Test Mean Squared Error

Recall from section 2.3.1 that we calculate Test MSE by producing a model based solely on the training data and
computing that model’s MSE from the testing data. In figure 4a we plot the ratios between the unweighted and weighted
event test MSEs. The mean of the distribution is 1.003, indicating that weighted OPR is .3 percent more accurate than
unweighted OPR on average.

3.4 Leave-One-Out Cross Validation

An Event-Normalized LOOCV Error Ratio above 1 suggests that weighted OPR has a measurable predictive advantage
over unweighted OPR. Figure 4b shows a mean LOOCV ratio of 1.001, suggesting that on average, weighting does
improve OPR predictions by 0.1% as directly compared to its unweighted counterpart.

Figure 5 shows the LOOCV ratio broken down by year. In nearly all cases, the binned LOOCV ratios are larger than
the linear ratios, confirming that bin weighting outperforms linearized weights. Furthermore, 2010 is the only year
where the binned LOOCV ratios are below 1. Although this implies that raw OPR possesses an advantage here, there

5



Figures: Weighting Estimation & Evaluation

(a) Residual Variance Pattern Throughout An Event (b) Linear Approximation of Residual Variances

Figure 3: Residual Variance Patterns

(a) Test MSE Ratio (b) Leave One Out Cross Validation Ratio Distribution

(c) Weighting Percent Improvement over Raw OPR

Figure 4: Weighting Evaluations

were only eight events run this year - the small sample size makes it difficult to make confidence inferences based on
that year.

Figure 4c shows the percentage improvement of weighted OPR over raw OPR over time. The size of each dot scales
with the number of events for that year recorded in the data, which is the number of district events played that year. The
blue dotted line is the average of the data. The only year with a negative percent improvement was 2010; however, note
that before 2014 no year had more than 20 district events. As the number of events grows, we see the improvement
from weighting stabilize on average.
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Figure 5: LOOCV Ratios between Unweighted and Weighted OPR

4 Discussion

Independent residuals is a key assumption for linear regression. Under this assumption, linear regression is extremely
efficient. However, we proved that the residuals of the OPR model are in fact not independent. Taking advantage of this
invalid assumption, we can lean into the matches in which OPR is most predictive, leading to an improved model. The
weightings that performed the best followed an asymmetric, roughly parabolic shape, with by far the least weight on
very early matches and the most weight on matches midway through the tournament.

Weighting OPR based on match recency showed a consistent, but small improvement over unweighted OPR at district
events between 2009 and 2024. Weighted Least Squares improved our estimation of teams by 0.015 Crescendo points
and impacted teams’ OPRs by about 0.2 points. This is not a large change, but it shows that even an unoptimized
weighting can improve on unweighted OPR.

We found that the variance of unweighted OPR residuals follows a similar pattern in every year we tested 5. Notably,
weighting improves OPR independent of OPR’s value as a metric in a given year. For example, OPR did very well in
2022 and poorly in 2017, but the accuracy of OPR increased similarly with weighting for both years 4c.

4.1 Limitations

WLS is only as good as its weights. We identified good weightings, but did not numerically optimize to find the best
weightings. For our first weighting model, residual variance binning, the computational cost to optimize the weighting
over b bins is in O(nb). This would take around four days of computation over a reasonable grid, which was outside our
scope.

To make optimization easier, we tried weight linearization (3b), which simplifies our search space. Instead of optimizing
over b bins, we would optimize over two slopes and two intercepts, for O(n4). However, this simplification trades
accuracy for optimization speed. In both cases, more optimization is required before we find the numerically best
weights.

4.2 Next Steps

The next step to improving our weighting is tuning the slopes and intercepts of the piecewise linear function using cross
validation. With considerable computing resources, it would also be worthwhile to brute-force optimize over the binned
weights.
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In a broader scope, the primary limitation of linear regression in an FRC context is small sample size. Teams almost
never play more than twelve qualification matches each in a single tournament, and while simple linear regression is an
efficient estimator 4, it doesn’t stabilize until late in the tournament. To make a more useful single-event summary for
FRC, we need to continue to reduce the variance, to make a model that stabilizes faster. However, per the Gauss-Markov
theorem [9], we know that simple linear regression is the minimum variance unbiased linear estimator. Therefore,
to improve on the variance of that estimator, you either need to accept bias, similar to how ELO models incorporate
historical information, or adopt a nonlinear model. Both options provide promising avenues to improving on current
regression methods in FRC.

4.3 Applications Outside the Regression Context

Any set of weights can be used to create a design matrix with repeated data entries, where the weighting vector would
determine how many times a set of matches within a bin should be duplicated. Running SLR on this matrix is equivalent
to running WLS on the original match matrix.

While WLS would use a set of optimized weights to compute OPR coefficients immediately, row replication would
generate a design matrix with duplicated rows before applying SLR to output the same coefficients. Using row
replication allows us to apply this data in a nonregression context and use models that incorporate higher biases to find
more accurate results.

5 Technical Appendix

Code for implementing weighted least squares for OPR can be found in the scoutR repo, at
scoutR/markdown/opr_weighting. To create the data file district_quals_09_24.rda, use this script.

Code for hyperparameter tuning can be found here.

6 Contact

To reach out to the Girls of Steel Data Science team, email Girls of Steel.

For questions or for help replicating our work, email Gabriel Krotkov.
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