
TODO(austin): Now that the python matches the original problem and
solves, confirm the paper matches what got implemented.

osqp!

1 Catapult MPC

We want to phrase our problem as trying to solve for the set of control
inputs which get us closest to the destination, but minimizes acceleration.
Specifically, we want to minimize acceleration close to the end. We also have
a voltage limit.

Our model is [
x1

v1

]
=

[
a00 a01
0 a11

] [
x0

v0

]
+

[
b0
b1

] [
u0

]
(1)

Our acceleration can be measured as:

(X1(1)−X1(0))

∆t
(2)

This simplifies to:

a11v0 + b1u0 − v0
∆t

(3)

and finally

(a11 − 1)v0 + b1u0

∆t
(4)

We can also compute our state matrix as a function of inital state and
the control inputs.

X1

X2

X3
...

 =


A
A2

A3

...

X0 +


B 0 0 0
AB B 0 0
A2B AB B 0
...

. . . . . .



U0

U1

U2
...

 (5)

2 MPC problem formulation

We want to penalize both final state and intermediate acceleration.

C =
39∑
n=0

(v(n+ 1)− v(n))2

∆t
πn + (X40 −Xfinal)

TQfinal(X40 −Xfinal) (6)
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where πn is a constant only dependent on n, and designed such that it
depends on the distance to the end of the sequence, not the distance from
the start.

In order to use OSQP, which has a code generator, we need to get this
into the form of

minimize 1
2
XTPX + qTX

subject to l <= AX <= u
This is the simplest form of a constrained quadratic program that we

can solve efficiently. Luckily for us, the problem statement above fits that
definition.

3 Manipulating the formulation

We need to separate constant factors from things dependent on U (or X in
OSQP parlance) so we can create these matrices easier.

3.1 Terminal cost

Next step is to compute X40 using equation 5. We can do this by only
computing the final row of the matrix.

X40 =
[
A39B A38B . . . B

] U0
...

U39

+ A40X0 = BfU + A40X0 (7)

We can substitute equation 7 into equation 1.

Cf =UTBT
f QfinalBfU

+ 2(A40X0 −Xfinal)
TQfinalBfU

+ (A40X0 −Xfinal)
TQfinal(A

40X0 −Xfinal)

(8)

3.2 Acceleration costs

We can compute a velocity matrix for all the times by stripping out the
positions from equation 5 by using every other row. We can use this to then
compute the accelerations for each time slice and then penalize them.
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
v1
v2
...
v40

 = MU +


a11
a211
...
a4011

 v0 = MU +mv0 (9)

We can then use equation 2 in matrix form to convert a velocity matrix
to an acceleration matrix.

α1

α2

α3
...

α40

 =
1

∆t




1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 . . . −1 1



v1
v2
...
v40

−


v0
0
...
0


 (10)

We can pull some of these terms out to make it easier to work with.

α = WV + wv0 (11)

Our acceleration cost function is then:

Ca = αT

π1 0
π2

0
. . .

α = αTΠα (12)

We can substitute everything in to get something as a function of U .

Ca = (W (MU +mv0) + wv0)
T Π(W (MU +mv0) + wv0) (13)

And then simplify this down into the expected form.

Ca = (WMU + (Wm+ w)v0)
T Π(WMU + (Wm+ w)v0) (14)

Ca =UTMTW TΠWMU

+ 2v0(Wm+ w)TΠWMU

+ v0(Wm+ w)TΠ(Wm+ w) v0

(15)

3.3 Overall cost

We can combine equations 8 and 15 to get our overall cost in the correct
form.
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C = UT
(
MTW TΠWM +BT

f QfinalBf

)
U

+
(
2v0(Wm+ w)TΠWM − 2XT

finalQfinalBf

)
U

+XT
finalQfinalXfinal + v0(Wm+ w)TΠ(Wm+ w) v0

(16)

4 Response

For a reasonable request (11 m/s after 90 degrees), we get the following
response

This is well within 1% error, and avoid saturation and keeps the acceler-
ation down at the end.
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