
Introduction Generating A Path Following A Path Conclusion

Adaptive Pure Pursuit

Ethan Frank Kimberlee I. Model Paul Gehman

Dawgma Robotics

September 15, 2019

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Table of Contents

1 Introduction
Odometry

2 Generating A Path
Generating Paths

3 Following A Path
Following Paths

4 Conclusion
Visualization
Closing

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Introduction

An overview of Pure Pursuit as used by team 1712 during the
2018 season

Architectural and Mathematical overview. Staying away from
code

Please raise your hand to ask questions as you have them.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Brief History

16 Possible Paths

Pure Pursuit Algorithm

File-Encoded Routines

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

16 Possible Paths

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

16 Possible Paths

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

What is Pure Pursuit

Path Follower

Path Generator

JSON based File Encoding

A bunch of Mathematics Expressions in a trench coat

Analogy

Think of path generation as drawing a virtual line.
And think of path following as walking along the virtual line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

What is Pure Pursuit

Path Follower

Path Generator

JSON based File Encoding

A bunch of Mathematics Expressions in a trench coat

Analogy

Think of path generation as drawing a virtual line.
And think of path following as walking along the virtual line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

What is Pure Pursuit

Path Follower

Path Generator

JSON based File Encoding

A bunch of Mathematics Expressions in a trench coat

Analogy

Think of path generation as drawing a virtual line.
And think of path following as walking along the virtual line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

What is Pure Pursuit

Path Follower

Path Generator

JSON based File Encoding

A bunch of Mathematics Expressions in a trench coat

Analogy

Think of path generation as drawing a virtual line.
And think of path following as walking along the virtual line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

What is Pure Pursuit

Path Follower

Path Generator

JSON based File Encoding

A bunch of Mathematics Expressions in a trench coat

Analogy

Think of path generation as drawing a virtual line.
And think of path following as walking along the virtual line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Odometry

Use sensors to track the location of the robot

Plot on a Cartesian Plain

Pure Pursuit requires accuracy

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Importance of Odometry

NavX failed

Robot attempting to turn slightly left

No input causes RoboRIO to believe that it is not turning at
all

Increasing control to attempt left turn

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Importance of Odometry

NavX failed

Robot attempting to turn slightly left

No input causes RoboRIO to believe that it is not turning at
all

Increasing control to attempt left turn

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Sensors involved

Rotary Encoders (one on each side of the drive train)

NavX MXP for accurate angle

Preset starting location

Long term summation of changes to the position

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Sensors involved

Rotary Encoders (one on each side of the drive train)

NavX MXP for accurate angle

Preset starting location

Long term summation of changes to the position

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Odometry

Odometric Calculations

Dl and Dr Distance traveled by the left and right wheels since
previous iteration

A angle robot is facing relative to the field.

Xprev and Yprev location from previous calculation

X and Y location of the robot relative to starting position.

D = (Dl + Dr)/2 (1)

X = Xprev + D ∗ cos(A) (2)

Y = Yprev + D ∗ sin(A) (3)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Generating Paths

Define start point, destination and way points

Inject additional way points

Smooth the path

Curves and maximum speed along the path.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Define Way points

Path Drawer Tool

Start Point: one of four set positions.

Way Points, to avoid obstacles.

Destination.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Define Way points

Path Drawer Tool

Start Point: one of four set positions.

Way Points, to avoid obstacles.

Destination.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Injecting Points

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Injecting Points

Path is a collection of way points

Also a collection of line segments

To inject points drop breadcrumbs at regular intervals

interval := the distance between injected points;

segments := the lines between the way points;

newpoints := [empty list of points];

for each segment in segments:

walker := segment.start;

while (walker < segment.end):

newpoints.append(walker);

walker.advanceOnLine(segment, interval);

Dawgma used 6 inch sub-segments

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Injecting Points

Path is a collection of way points

Also a collection of line segments

To inject points drop breadcrumbs at regular intervals

interval := the distance between injected points;

segments := the lines between the way points;

newpoints := [empty list of points];

for each segment in segments:

walker := segment.start;

while (walker < segment.end):

newpoints.append(walker);

walker.advanceOnLine(segment, interval);

Dawgma used 6 inch sub-segments

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Injecting Points

Path is a collection of way points

Also a collection of line segments

To inject points drop breadcrumbs at regular intervals

interval := the distance between injected points;

segments := the lines between the way points;

newpoints := [empty list of points];

for each segment in segments:

walker := segment.start;

while (walker < segment.end):

newpoints.append(walker);

walker.advanceOnLine(segment, interval);

Dawgma used 6 inch sub-segments

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing the Path

Dawgma used the same algorithm as Team 2168

Each point is a weighted combination of:

the original point
the midpoint of the previous and next points

Repeats calculation of small increments

Finishes when calculation results in sufficiently small changes
(Tolerance)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing the Path

let og, nc := original path, smoothed path (copy og);

let a, b := original weight, smoothing weight;

let t, c := tolerance, 0.0;

while(c >= t):

c := 0;

for each x, y in nc, og:

let tmp := nc;

nc +=

a(og − nc) + b(ncprev + ncnext − 2(nc))

c += absval(tmp - nc);

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing the Path

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing Alternatives

Quintic Splines for smoothing way points

Bezier Curves for directly generating a path

Generate some points by hand

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing Alternatives

Quintic Splines for smoothing way points

Bezier Curves for directly generating a path

Generate some points by hand

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Smoothing Alternatives

Quintic Splines for smoothing way points

Bezier Curves for directly generating a path

Generate some points by hand

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Visualizing Paths

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Visualizing Paths

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Curvatures and Velocities

Story time.

Slow down around turn

Determine the curvature (rate of turn)

How much to slow down

Check the white paper for details on these steps

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Curvatures and Velocities

Story time.

Slow down around turn

Determine the curvature (rate of turn)

How much to slow down

Check the white paper for details on these steps

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Velocity Profiles

Slow the maximum velocity during turns to prevent tipping

Introduce sudden acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Velocity Profiles

Slow the maximum velocity during turns to prevent tipping

Introduce sudden acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Velocity Profiles

Decelerate before the curve

Re-accelerate after the curve

Changing Velocity within the curve could cause tipping

Each point has a target velocity and target acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Velocity Profiles

Decelerate before the curve

Re-accelerate after the curve

Changing Velocity within the curve could cause tipping

Each point has a target velocity and target acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Velocity Profiles

Decelerate before the curve

Re-accelerate after the curve

Changing Velocity within the curve could cause tipping

Each point has a target velocity and target acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Encoding Velocity and Acceleration

Zero (0) max velocity at the starting line

Rate limit acceleration during runtime instead of path
generation

Use max velocity of next point instead of current point

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Generating Paths

Encoding Velocity and Acceleration

Zero (0) max velocity at the starting line

Rate limit acceleration during runtime instead of path
generation

Use max velocity of next point instead of current point

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Following the Path

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Following The Path

Know the current location using odometry

Find the closest way point along the path

Find the lookahead point

Drive in an arc from current location to lookahead point

Calculate the target left and right wheel velocities

Use a control loop to achieve the target left and right wheel
velocities

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Closest Point

cur the current location of the robot

min the point with minimal distance from cur

prev the previous point of minimal distance

distance the Cartesian distance formula:
distance(A,B)→ {

√
(Bx − Ax)2 + (By − Ay)2}

min := prev;

for point in path from prev to end:

if(distance(min, cur) > distance(point, cur)):

min := point;

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Lookahead Point

Robot attempts to drive towards this point

Follows the path as the point keeps moving forward

lookahead distance is the distance in front of the robot
where the lookahead point is calculated

Intersection of a “lookahead” circle with the path.

two intersection points, choose the one farther in front of the
robot

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Lookahead Point

Robot attempts to drive towards this point

Follows the path as the point keeps moving forward

lookahead distance is the distance in front of the robot
where the lookahead point is calculated

Intersection of a “lookahead” circle with the path.

two intersection points, choose the one farther in front of the
robot

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Lookahead Point

loc := the Robot’s current location (odometry);

d := the Lookahed Distance;

n := the nearest point in the path;

segments := the lines between points in the path;

intersections := [empty list];

for each segment in segments from n to end:

a, b := intersection(segment, loc, d);

if(a != null): intersections.append(a);

if(b != null): intersections.append(b);

lookahead_point := segments.last();

Check the white paper for details on the intersection of a circle
and line.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Choosing a Lookahead Distance

Shorter lookahead for curvy paths

Longer lookahead for smoothing a bit

Dawgma used a distance of 12 to 25 inches

Consider varying the lookahead distance within the path

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Arc Towards the Lookahead Point

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Curvature of the Arc

Robot at the origin traveling along the Y-axis

(X ,Y) is the lookahead point

L is the direct path to the lookahead point

but we want to drive the arc around L

r is the radius of the arc

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Stemming from the Pythagorean Equation

L =
√

X 2 + Y 2 (4)

r = L2/(2X) (5)

Curvature (C) is 1/r

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

On the Field

P is the lookahead point

R is the robot location (from odometry)

A is the robots angle

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

The robot is traveling along the line:

0 = −tan(A)x + y + tan(A)Rx − Ry (6)

We can calculate X as:

X =
| − tan(A)Px + Py + tan(A)Rx − Ry |√

−tan(A)2 + 1
(7)

and Y as:

Y =

√√
(Px − Rx)2 + (Py − Ry)2 − X 2 (8)

From here we can use curvature as calculated earlier.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Which direction to turn

The direction to turn can be taken as the sign of the vector cross
product:

Red × Orange (9)

Left if negative, right if positive.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Which direction to turn

The direction to turn can be taken as the sign of the vector cross
product:

Red × Orange (9)

Left if negative, right if positive.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Robot Velocity

As fast as the robot can go

Without falling over.

Early in the season, we traveled the entire path at the
maximum velocity of the sharpest turn.

Later in the season, we added the ability to change velocities
throughout the path.

At velocity transitions we would calculate an acceleration or
deceleration.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Robot Velocity

As fast as the robot can go

Without falling over.

Early in the season, we traveled the entire path at the
maximum velocity of the sharpest turn.

Later in the season, we added the ability to change velocities
throughout the path.

At velocity transitions we would calculate an acceleration or
deceleration.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Robot Velocity

As fast as the robot can go

Without falling over.

Early in the season, we traveled the entire path at the
maximum velocity of the sharpest turn.

Later in the season, we added the ability to change velocities
throughout the path.

At velocity transitions we would calculate an acceleration or
deceleration.

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Wheel Velocities

Have:

Target Velocity (V) of the robot

Target curvature (ω) of the robot

Track Width (T) of your robot

Want:

Left wheel velocity (L)

Right wheel velocity (R)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Wheel Velocities

Mathematical Model of a Tank Drive:

V = (L + R)/2 (10)

ω = (L− R)/T (11)

V = ω/C (12)

Now we isolate L and R

L = V
2 + CT

2
(13)

R = V
2− CT

2
(14)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Controlling the Wheels

Combined Feed Forward and Feed Backward Controller

Individually control left and right wheel speed based on Rotary
Encoder velocities.

PWM output

Desired Velocity and Desired Acceleration

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Feed Forward

Kv proportional constant for target velocity (V)

Ka proportional constant for target acceleration (A)

FF = Kv ∗ V + Ka ∗ A (15)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Feed Backward

Corrects error between actual velocity (M) and target velocity.

Kp is the feed backwards proportional constant.

FB = Kp ∗ (V −M) (16)

Combined to get PWM output (O):

O = FF + FB = Kv ∗ V + Ka ∗ A + Kp ∗ (V −M) (17)

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Choosing Proportional Constants

start with a straight line path
Set Kv approximately equal to 1/Vmax

Set Ka and Kp to zero (0)
Adjust Kv until a target velocity and the actual velocity
match.

Figure: graphs of velocity vs. time. Left is at the start. right is with Kv

tuned

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Choosing Proportional Constants

Set Ka to 0.002

Adjust Ka until the acceleration lines on the graph are roughly
straight

Figure: graphs of velocity vs. time. Left is at the start. right is with Kv

tuned

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Following Paths

Choosing Proportional Constants

Set Kp to 0.01
Adjust Ka as needed until the actual line covers the desired
line
Too much feed backwards will cause “jitteryness”

Figure: graphs of velocity vs. time. Left is at the start. right is with Kv

tuned

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Visualization

Visualizing a Path

PowerPoint with arrows

Path Drawing Tool

Path Simulation Tool

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Visualization

Visualizing Paths in PowerPoint

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Visualization

Path Drawing Tool

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Visualization

Path Simulation Tool

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

Introduction Generating A Path Following A Path Conclusion

Closing

Contact and Links

The 1712 Pure Pursuit White Paper:
https://www.chiefdelphi.com/media/papers/3488

Dawgma’s 2018 Code Repository:
https://github.com/Dawgma-1712/new-FRC-2018

Chief Delphi Discussion:
https://www.chiefdelphi.com/forums/showthread.

php?t=166214

Dawgma Email: frc1712@gmail.com

My Email: kimee.i.model@gmail.com

Ethan Frank, Kimberlee I. Model, Paul Gehman Dawgma Robotics

Adaptive Pure Pursuit

https://www.chiefdelphi.com/media/papers/3488
https://github.com/Dawgma-1712/new-FRC-2018
https://www.chiefdelphi.com/forums/showthread.php?t=166214
https://www.chiefdelphi.com/forums/showthread.php?t=166214
mailto:frc1712@gmail.com
mailto:kimee.i.model@gmail.com

	Introduction
	Odometry

	Generating A Path
	Generating Paths

	Following A Path
	Following Paths

	Conclusion
	Visualization
	Closing

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	1.100:
	1.101:
	1.102:
	1.103:
	1.104:
	1.105:
	1.106:
	1.107:
	1.108:
	1.109:
	1.110:
	1.111:
	1.112:
	1.113:
	1.114:
	1.115:
	1.116:
	1.117:
	1.118:
	1.119:
	1.120:
	1.121:
	1.122:
	1.123:
	1.124:
	1.125:
	1.126:
	1.127:
	1.128:
	1.129:
	1.130:
	1.131:
	1.132:
	1.133:
	1.134:
	1.135:
	1.136:
	1.137:
	1.138:
	1.139:
	1.140:
	1.141:
	1.142:
	1.143:
	1.144:
	1.145:
	1.146:
	anm1:

